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INVERSE PROBLEM OF DEFORMATION OF A PHYSICALLY

NONLINEAR INHOMOGENEOUS MEDIUM

UDC 539.3I. Yu. Tsvelodub

An isotropic linear-elastic (viscoelastic) plane containing various physically nonlinear elliptic inclu-
sions is considered. It is assumed that the distances between the centers of the inclusions are much
greater than their dimensions. The problem is to determine the orientation of the inclusions and the
loads applied at infinity which ensure a specified value of the principal shear stress in each inclusion.
Necessary and sufficient conditions of existence of the solution of the problem are formulated for a
plane strain of an incompressible inhomogeneous medium.

We consider an isotropic linear-elastic plane with physically nonlinear elliptic inclusions (PNEI) with different
mechanical properties, dimensions, and orientations of symmetry axes. In the kth PNEI denoted by S∗k , we choose
the coordinate system Okx1kx2k in such a manner that the equation of the boundary Lk separating S∗k from the
elastic medium S has the form x2

1ka
−2
k +x2

2kb
−2
k = 1, where ak > bk (hereafter, summation over k is not performed).

Let the distance between the centers of two arbitrary PNEI be much greater than their dimensions:
|OkOl| � max

i
ai ∀ k, l. In this case, the interaction between the stress-strain states of inclusions can be ignored.

Let uniformly distributed stresses act at infinity. We denote the principal values of the stresses by N1 and
N2 and the angle between the first principal axis and the Okx1k-axis by αk.

We assume that the entire region S ∪ S∗k (k = 1, 2, . . .) undergoes plane strain and the elastic medium and
all PNEI are incompressible. Hence, in any coordinate system Ox1x2 in S, the strains εij are related to the stresses
σij (i, j = 1, 2) by the formulas [1]

4µε22 = −4µε11 = σ22 − σ11, 2µε12 = σ12, (1)

where µ is the shear modulus. [We note that, if µ is replaced by µ(1 +K) (K is the Volterra operator [2]), relations
(1) correspond to plane strain of a linear viscoelastic incompressible medium.]

We assume that the kth inclusion is isotropic and nonlinear elastic (or obeys the deformation theory of
plasticity). In this case, the constitutive equations in the coordinate system Okx1kx2k have the form

ε∗22k = −ε∗11k = Fk(τ∗k )(σ∗22k − σ∗11k)/2,
(2)

ε∗12k = Fk(τ∗k )σ∗12k, 2τ∗k = [(σ∗22k − σ∗11k)2 + 4σ∗212k]1/2 (k = 1, 2, . . .).

Here Fk(τ∗k ) > 0 is a specified function and τ∗k is the principal shear stress. (Relations (2) can be complicated by
replacing their right sides by nonlinear operators [1, 3].) As in [1, 3], we assume that the strains of the medium and
PNEI are small and the load and displacement fields are continuous on the boundaries Lk (k = 1, 2, . . .).

Since, by assumption, inclusions do not interact with one another, we use the following relations between
the stress-strain state (uniform in this case) of the kth PNEI (in the coordinate system Okx1kx2k) and the loads at
infinity [1, 3]:
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µ(mkC̄k + D̄k) = mkAk +Bk − 2(mkΓ + Γ′k), µ(C̄k +mkD̄k) = −(Ak +mkBk) + 2Γ,

2Ak = σ∗11k + σ∗22k, 2Bk = σ∗22k − σ∗11k + 2iσ∗12k, Ck = ε∗11k + ε∗22k + 2iε∗k,
(3)

Dk = ε∗11k − ε∗22k + 2iε∗12k, mk = (ak − bk)/(ak + bk),

4Γ = N1 +N2, Γ′k = Γ′0 e−2iαk , 2Γ′0 = N2 −N1 (k = 1, 2, . . .).

Here ε∗k is the rotation in S∗k ; the rotation at infinity is ε∞ = 0.
The inverse problem is formulated as follows. Is it possible (and under which conditions) to choose the

loads N1 and N2 (the principal directions are assumed to be known) and the angles αk so that the principal shear
stress in each inclusion takes a specified value, i.e., the equalities τ∗k = τ0k hold (τ0k are the specified values and
k = 1, 2, . . .)?

We show that, under certain restrictions, the solution of the above problem exists. Taking into account that
the equalities |Bk| = τ∗k , Ck = 2iε∗k, and D̄k = −2Fk(τ∗k )Bk hold by virtue of (2) and (3) and setting Bk = τ0k eiϕk ,
from (3) we obtain

2Γ′0 e−2iαk = [(1−m2
k) + βk(1 +m2

k)]τ0k eiϕk +4iµmkε
∗
k,

(4)
2Γ = Ak +mk(1− βk)τ0k eiϕk −2iµε∗k, βk = 2µFk(τ0k).

Since Γ and Ak are real quantities, the second relation of (4) implies

2µε∗k = mk(1− βk)τ0k sinϕk. (5)

Substitution of (5) into (4) yields

2Γ′0 cos 2αk = [(1−m2
k) + βk(1 +m2

k)]τ0k cosϕk,
(6)

−2Γ′0 sin 2αk = [(1 +m2
k) + βk(1−m2

k)]τ0k sinϕk,

which can be written in a more convenient form

2Γ′0τ
−1
0k e−2iαk = (1 + βk) eiϕk −m2

k(1− βk) e−iϕk .

Multiplying this equality by the conjugate equality, i.e., eliminating αk from (6), we obtain

(2Γ′0τ
−1
0k )2 = (1 + βk)2 − 2m2

k(1 + βk)(1− βk) cos 2ϕk +m4
k(1− βk)2. (7)

From (7) follows

cos 2ϕk = [(1 + βk)2 +m4
k(1− βk)2 − (2Γ′0τ

−1
0k )2]/[2m2

k(1 + βk)(1− βk)]. (8)

Equality (8) is valid if the absolute value of its right side does not exceed unity. Solving the corresponding
inequalities and taking into account that 1 + βk > m2

k|1− βk| [since (3) and (4) imply that m2
k < 1 and βk > 0], we

obtain

F1k(τ0k) 6 2|Γ′0| 6 F2k(τ0k),
(9)

F1k ≡ (1 + βk −m2
k|1− βk|)τ0k, F2k ≡ (1 + βk +m2

k|1− βk|)τ0k.

Inequalities (9) are satisfied for any k under the necessary and sufficient conditions

max
k

F1k 6 2|Γ′0| 6 min
k
F2k. (10)

It follows from (10) that the solution of the problem exists if

max
k

F1k(τ0k) 6 min
k
F2k(τ0k). (11)

If (11) is satisfied, Γ′0 can take any value within the interval determined by inequalities (10), and the angle
ϕk is found from (8). In the interval [−π, π], this angle can take four values with different signs which differ by the
quantity ±π. Given Γ′0 and ϕk, the angle αk is found from (6) (each value of ϕk in the same interval corresponds
to two values of αk which differ by π). The quantity Γ can be written as Γ = Γ0 (Γ0 is an arbitrary constant). In
this case, Ak is determined from the second equality of (4):

Ak = 2Γ0 −mk(1− βk)τ0k cosϕk.
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One can easily show that, for specified values of Γ′0 and αk, the quantities τk and ϕk are determined uniquely,
i.e., the values of τ∗k = τ0k corresponds to the determined quantities Γ′0 and αk. To this end, it is sufficient to establish
that system (6) is uniquely solvable for τ0k and ϕk (−π 6 ϕk 6 π). In this case, it is assumed that the constitutive
equations (2) for PNEI satisfy the stability conditions [4]

∆σ∗ijk∆ε∗ijk > 0

(summation is performed from 1 to 2 over i and j, and summation over k is not performed), which are reduced here
to the inequalities [4, p. 129] [τFk(τ)]′ > 0, i.e.,

[τβk(τ)]′ > 0 (12)

(the prime denotes differentiation with respect to τ).
From (6), we obtain

(2Γ′0)−2 = f(τ0k) ≡ cos2 2αk
[(1−m2

k)τ0k + (1 +m2
k)τ0kβk]2

+
sin2 2αk

[(1 +m2
k)τ0k + (1−m2

k)τ0kβk]2
.

Hence, with allowance for (12) and inequalities m2
k < 1 and βk > 0, we have f ′(τ0k) < 0. It follows that an inverse

single-valued function τ0k = τ0k(Γ′0) exists. For known values of τ0k, the quantities cosϕk and sinϕk are uniquely
determined from (6). The statement is proved.

Condition (11) imposes stringent restrictions on the quantities τ0k. We consider a particular case where
inequality (11) is satisfied. Let all the PNEI have identical mechanical properties, i.e., all Fk = F in (2), and it
is required to choose the stresses N1 and N2 at infinity so that the quantity τ∗k is the same in all the inclusions:
τ∗k = τ0. In this case, βk = β0 ≡ 2µF (τ0), condition (11) holds, and Γ′0 can be written, for example, in the form
Γ′0 = (1 + β0)τ0/2. Hence, by virtue of (8), we obtain

cos 2ϕk = m2
k(1− β0)/(2(1 + β0)),

which is valid for any τ since

|m2
k(1− β0)/(2(1 + β0))| < m2

k/2 < 1/2,

inasmuch as β0 > 0.
As was pointed out above, one can use more complex relations instead of (1) and (2): replace (1) by

equations of a linear viscoelastic medium and replace (2) by equations of a nonlinear viscoelastoplastic inclusion
(or an inclusion that exhibits creep properties or one that accumulates damages and fails because of creep). In this
case, the quantities βk in (4) and all the subsequent formulas are replaced by the Volterra operators. For these
media, one can formulate a problem similar to that considered above, i.e., the problem of optimal deformation with
time and fracture of a PNEI.
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